The SELF-PRUNING gene of tomato regulates vegetative to reproductive switching of sympodial meristems and is the ortholog of CEN and TFL1.
نویسندگان
چکیده
Vegetative and reproductive phases alternate regularly during sympodial growth in tomato. In wild-type 'indeterminate' plants, inflorescences are separated by three vegetative nodes. In 'determinate' plants homozygous for the recessive allele of the SELF-PRUNING (SP) gene, sympodial segments develop progressively fewer nodes until the shoot is terminated by two consecutive inflorescences. We show here that the SP gene is the tomato ortholog of CENTRORADIALIS and TERMINAL FLOWER1, genes which maintain the indeterminate state of inflorescence meristems in Antirrhinum and Arabidopsis respectively. The sp mutation results in a single amino acid change (P76L), and the mutant phenotype is mimicked by overexpressing the SP antisense RNA. Ectopic and overexpression of the SP and CEN transgenes in tomato rescues the 'indeterminate' phenotype, conditions the replacement of flowers by leaves in the inflorescence and suppresses the transition of the vegetative apex to a reproductive shoot. The SELF-PRUNING gene is expressed in shoot apices and leaves from very early stages, and later in inflorescence and floral primordia as well. This expression pattern is similar to that displayed by the tomato ortholog LEAFY and FLORICAULA. Comparison of the sympodial, day-neutral shoot system of tomato and the monopodial, photoperiod-sensitive systems of Arabidopsis and Antirrhinum suggests that flowering genes that are required for the processing of floral induction signals in Arabidopsis and Antirrhinum are required in tomato to regulate the alternation between vegetative and reproductive cycles in sympodial meristems.
منابع مشابه
Multiple Regulatory Roles for SELF-PRUNING in the Shoot System of Tomato
In the Scientific Correspondence by Thouet et al. (2008), the authors present several sections of tomato (Solanum lycopersicum) apices probed by the SELF-PRUNING (SP) gene and claim that (1) SP is expressed in all nongrowing axillary meristems, not only sympodial meristems, and (2) SP is not expressed at all in all major organ primordia, contrary to what we published (Pnueli et al., 1998). Base...
متن کاملMultiple regulatory roles for SELF-PRUNING in the shoot system of tomato.
In the Scientific Correspondence by Thouet et al. (2008), the authors present several sections of tomato (Solanum lycopersicum) apices probed by the SELF-PRUNING (SP) gene and claim that (1) SP is expressed in all nongrowing axillary meristems, not only sympodial meristems, and (2) SP is not expressed at all in all major organ primordia, contrary to what we published (Pnueli et al., 1998). Base...
متن کاملTransition to Flowering and Morphogenesis of Reproductive Structures in Tomato
Flowering in tomato (Solanum lycopersicum L.) has long been investigated by plant physiologists and horticulturists aiming to increase productivity of this important fruit crop. The disruption of the sequence of events which give rise to normal development of the reproductive structures by either the manipulation of the environment, hormones or mutations has provided information useful to unrav...
متن کاملUniversal florigenic signals triggered by FT homologues regulate growth and flowering cycles in perennial day-neutral tomato.
The transition from vegetative to floral meristems in higher plants is programmed by the coincidence of internal and environmental signals. Classic grafting experiments have shown that leaves, in response to changing photoperiods, emit systemic signals, dubbed 'florigen', which induce flowering at the shoot apex. The florigen paradigm was conceived in photoperiod-sensitive plants: nevertheless ...
متن کاملCaJOINTLESS is a MADS-box gene involved in suppression of vegetative growth in all shoot meristems in pepper
In aiming to decipher the genetic control of shoot architecture in pepper (Capsicum spp.), the allelic late-flowering mutants E-252 and E-2537 were identified. These mutants exhibit multiple pleiotropic effects on the organization of the sympodial shoot. Genetic mapping and sequence analysis indicated that the mutants are disrupted at CaJOINTLESS, the orthologue of the MADS-box genes JOINTLESS ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Development
دوره 125 11 شماره
صفحات -
تاریخ انتشار 1998